Cycles of quadratic Latin squares and antiperfect 1‐factorisations

نویسندگان

چکیده

A Latin square of order n $n$ is an × $n\times n$ matrix symbols, such that each symbol occurs exactly once in row and column. For odd prime power q $q$ let F ${{\mathbb{F}}}_{q}$ denote the finite field . quadratic a L [ , b ] ${\rm{ {\mathcal L} }}[a,b]$ defined by ( ) i j = + − if residue otherwise ${({\mathscr{L}}[a,b])}_{i,j}=\left\{\begin{array}{cc}i+a(j-i) & \,\text{if}\,\,j-i\,\,\text{is in}\,\,{{\mathbb{F}}}_{q},\\ i+b(j-i) \,\text{otherwise},\end{array}\right.$ for some { } ⊆ $\{a,b\}\subseteq {{\mathbb{F}}}_{q}$ $ab$ 1 $(a-1)(b-1)$ are residues Quadratic squares have previously been used to construct perfect 1-factorisations, mutually orthogonal atomic squares. We first characterise which devoid 2 $2\times 2$ subsquares. Let G $G$ be graph F} }}$ 1-factorisation If union every pair 1-factors induces Hamiltonian cycle then called perfect, there no induce antiperfect. use new examples antiperfect 1-factorisations complete graphs bipartite graphs. also demonstrate p $p$ only finitely many orders powers could or

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Latin Squares: Transversals and counting of Latin squares

Author: Jenny Zhang First, let’s preview what mutually orthogonal Latin squares are. Two Latin squares L1 = [aij ] and L2 = [bij ] on symbols {1, 2, ...n}, are said to be orthogonal if every ordered pair of symbols occurs exactly once among the n2 pairs (aij , bij), 1 ≤ i ≤ n, 1 ≤ j ≤ n. Now, let me introduce a related concept which is called transversal. A transversal of a Latin square is a se...

متن کامل

Lifting Redundancy from Latin Squares to Pandiagonal Latin Squares

In the pandiagonal Latin Square problem, a square grid of size N needs to be filled with N types of objects, so that each column, row, and wrapped around diagonal (both up and down) contains an object of each type. This problem dates back to at least Euler. In its specification as a constraint satisfaction problem, one uses the all different constraint. The known redundancy result about all dif...

متن کامل

Latin Squares and Redundant Inequalities

A complete classification of redundant sets of inequalities in the specification of the Latin Square problem of size N is proven. Related issues on variations of the same problem are discussed.

متن کامل

Latin squares: Equivalents and equivalence

This essay describes some mathematical structures ‘equivalent’ to Latin squares and some notions of ‘equivalence’ of such structures. According to the Handbook of Combinatorial Design [2], Theorem II.1.5, a Latin square of order n is equivalent to • the multiplication table (Cayley table) of a quasigroup on n elements; • a transversal design of index 1; • a (3,n)-net; • an orthogonal array of s...

متن کامل

Amalgamating infinite latin squares

A finite latin square is an n × n matrix whose entries are elements of the set {1, . . . , n} and no element is repeated in any row or column. Given equivalence relations on the set of rows, the set of columns, and the set of symbols, respectively, we can use these relations to identify equivalent rows, columns and symbols, and obtain an amalgamated latin square. There is a set of natural equat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Designs

سال: 2023

ISSN: ['1520-6610', '1063-8539']

DOI: https://doi.org/10.1002/jcd.21905